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Abstract

Background: Nowadays, forecasting models based on nonparametric models have been developed in many branches of science
such as mathematics and economics. However, the relatively complicated structure of these models has made them less practical
in medical sciences.

Objectives: In this study, we investigated the application of a nonparametric regression model to predict the psychological symp-
toms appearing six months after mild traumatic brain injury. We also made a comparison between the performance of nonpara-
metric regression and artificial neural network models in predicting the psychological symptoms.

Methods: In a six-month period during 2015 - 2017, information of 100 mild traumatic patients was included in a prospective cohort
study. The data were then divided randomly into two groups of training (n =50) and testing (n = 50) for 100 times. In the training
group, the focus was on 100 artificial neural network and nonparametric regression models. However, in the testing group, a com-
parison was made between the values obtained using the two final models. To compare the models, the ROC curve and the accuracy
rate were finally applied.

Results: According to the obtained results, the nonparametric regression model showed an accuracy rate of 91.25% while the neural
network model had an accuracy rate of 85.34%. In the experimental set for both neural network and nonparametric regression
models, the area under the ROC curve appeared to be 81.51% and 85.73 %, respectively.

Conclusions: The nonparametric regression model appeared to be more powerful than the neural network model in predicting
psychological symptoms.

Keywords: Neural Network, Statistics, Nonparametric, Forecasting, Brain Concussion, Behavioral Symptoms

1. Background

In recent years, there have been significant improve-
ments worldwide in head trauma surgery, hospital ser-
vices, and trauma care and recovery. However, mild trau-
matic brain injury (MTBI) patients are mostly faced with
various problems related to their physical, psychological,
and neuronal function. They may also experience psycho-
logical symptoms for weeks just after the injury (1-3). Al-
though these problems can result in chronic disabilities,
they are not paid enough attention and consequently re-
ceive no appropriate treatment, which may be due to the
complexity of their mental, biological, and social status.
Exploring TBI through an organized method is most dif-
ficult because almost odd clinical manifestations are cre-
ated as a result of the distribution of brain injury (4). Ac-
cordingly, the majority of the experiments have focused on
exploring the nature and the effect of consequent physi-

cal problems following MTBI. However, exploring the ex-
pected psychological symptoms following TBI is not com-
pletely achieved yet. Therefore, developing statistical mod-
els to predict these psychological symptoms is of impor-
tance.

Determining the relationships between variables
along with defining effective variables and predictors are
the basic mission of modeling (5). Human health is the
most concerned subject in the medical and epidemio-
logical research (6) and the methods of modeling and
prediction using parametric models seem to be limited
and unpractical (7). In logistic regression, the assumption
of independence of errors and variables is very vital (8). In
the case of data complexity, the model’s suppositions may
be consequently far from accuracy. The prior knowledge
of the functional form relationship makes the parametric
models’ approach. According to this approach and in
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the case of knowledge accuracy, most data sets are mod-
eled well by a parametric method. However, in the case
of the selection of wrong functional forms, a large bias
will be created as compared to competitive models (9).
Thus, it seems that it is valuable to use methods that are
capable of prediction with the lowest error and highest
confidence. Nonparametric models have been among the
best methods of prediction in recent decades (10). Unlike
parametric models, nonparametric models make only
mild assumptions about the data and are appropriate
when there is no assumption about the distribution of
data.

Over the last decade, increasing attention has been de-
voted tononparametric models as a new technique for esti-
mation and forecasting in different branches of science (11,
12). Nonparametric model analysis relaxes the restricted
assumptions in the parametric models and enables one to
explore the data more flexibly (13, 14).

Among the popular parametric models, the artificial
neural networks (ANNs) models have been used frequently
in predicting variables. These models are used for various
purposes such as anticipation of cancer (15), prediction of
mortality after gastric surgery (16), etc. The ANNs are de-
fined as adaptive models that analyze data and they are in-
spired by the human brain’s functioning processes (17).

2. Objectives

In this study, we aimed to predict the psychological
symptoms after MTBI by nonparametric regression and
neural network models.

3. Methods

3.1. Patients and Study Design

This prospective cohort study was performed on 100
MTBI patients (GCS:13 to15) who were hospitalized in a neu-
rosurgery unit. The sample was composed of male and fe-
male patients aged 15 to 65 years. Before the study, we re-
ceived approval from the Ethics Committee of the hospital
and informed consent from the patients. Patients with a
history of spinal cord injury, communicational problems,
psychotic diseases, and mental retardation and those who
were unwilling to cooperate were all excluded from the
study.

In the first phase, the hospitalized patients were exam-
ined by a neurosurgeon. Then, if they were eligible for the
studybased on the defined criteria, their demographicand
clinical data were recorded in questionnaires. Six months
later, they were asked to attend a center for a consulta-
tion, neurological evaluation, and completing the brief
symptom inventory (BSI) questionnaire. For consistency in

completing the tests, the participants were asked one by
one and then an expert (MA in psychology) recorded their
oral responses in the questionnaires. The psychologist was
blinded to the results of neurological evaluation, organic
brain pathology, and psychological assessment. This could
reduce any outcome assessment bias or diagnostic suspi-
cion bias. For those patients who passed during the follow-
up period of six months and they still had not referred to
any reason, during two week have been called. To increase
the willingness of patients for participation in the study,
they were told that the examinations would be done by a
neurologist for free.

3.2. Sample Size

We selected the sample size based on the methodology
of Sedgwick et al. (18). They noted a 95% confidence inter-
val of the population prevalence that consists of the inter-
val of 15% to 25%. The applied sample size was based on al-
most a 20% prevalence in patients. Therefore, because the
patients’ population was almost 550, we used 110 (20%) pa-
tients as the sample size. However, 10 patients were lost to
follow-up. Finally, we had 100 patients (18).

In this study, 14 variables including age, sex, education
level, marital and financial status, smoking habits, mental
illness history in the family, being hospitalized in neuro-
surgery unit, history of trauma, underlying disease, psy-
chological drug usage, alcoholism, anesthesia, and sub-
stance use were used to compare the performance of the
two models in predicting psychological symptom:s.

We used the BSI questionnaire, which is the short form
of the SCI-90-R questionnaire. This questionnaire has 53
questions for evaluating the psychological symptoms and
separating healthy individuals from others. Dragutis et
al. first introduced this questionnaire in 1973. This ques-
tionnaire consists of nine different dimensions including
psychoticism, paranoia, interpersonal sensitivity, somati-
zation, depression, anxiety, obsessive-compulsive disorder,
anger, and phobia. The measure has shown to be reliable
and valid and has been used in research for examining
MTBI. Internal consistency was proven by Cronbach’s alpha
coefficient of 0.86 (19).

When the questionnaires were completed, the score of
each questionnaire was calculated. If the value of T-score
was above 60 in any subscale, it was considered as a pa-
tient.

3.3. Statistical Analysis
3.3.1. ANN Modeling

MATLAB is the most popular software for developing
ANNs. This supervised multilayer perceptron is formed
by input, hidden, and output layers. The nodes’ num-
ber of input and output layers is based on the data struc-
ture. Nonetheless, the vital step in the architecture of the
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neural network is to find the optimum number of hidden
nodes. The training set is to learn the patterns offered in
the data and the validation set is responsible for evaluat-
ing the over-fitting. Thus, in the first part, the data were
divided randomly into two sets of training (n = 50) and
testing (n = 50). This means that this procedure was re-
peated 100 times. Through changing the number of the
nodes in the hidden layer, we were to train a diversity of
networks. Also, in the testing step, we used the root mean
square (RMS) for comparing the performance of the net-
work. Our architecture was fitted with 100 ANN models
with 8 to 13 hidden nodes and at the end, we selected the
network with minimum RMS. The back-propagation algo-
rithm was then applied for training the networks in which
a learning rate and momentum value in the range of 0.1 -
0.5 and 0.1- 0.3 were considered, respectively, on the train-
ing set.

3.3.2. Nonparametric Regression Modeling

The nonparametric regression modeling is defined asa
set of regression analysis resulting in the predictor, which
isbased on the information taken from the data. Therefore,
it is not given a predetermined form. Unlike regression
based on parametric models, the nonparametric regres-
sion involves larger sample sizes because both the model
structure and the model estimates must be supplied by the
data. The selection of nonparametric estimators is very im-
portantin fitting the data in the nonparametric regression
for estimating the parameters. In this paper, in order to an-
alyze the nonparametric regression, we applied one of the
most popular nonparametric estimators called Nadaraya-
Watson (NW) kernel estimate. According to NW kernel, the
dependent variable is estimated from a limited set of data
points by combining the data points’ locations with a ker-
nel function.

The procedure of splitting the data was just like that
in the ANN model. We tried to fit 100 nonparametric re-
gression models to the data. The MATLAB and SPSS soft-
ware were also used for modeling the dependent variable.
Then, the ROC curve (20) and RMS criterion for the testing
set were both calculated so as to choose the best nonpara-
metric regression model.

4. Results

The modeling process was done in the ANN by means of
the training data set. We fitted and applied different three-
layer ANN models on six structures with 813 and 10 neu-
rons in the middle and hidden layers, respectively. Also,
in the same case, we faced a momentum of 0.8, the learn-
ingrate of 0.04, and back-propagation learning algorithm,
which was the best model for data prediction with an RMS
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of 0.1104. The accuracy rate of the model was 85.34% (Table

1).

Table 1. The Best Neural Network Model for Observations

Architecture (Input/Middle/Output) RMS Accuracy Rate
(14/8/1) 0.1216 0.802
(14/9/1) 0.1181 0.816
(14/10/1)* 0.1104 0.853
(14/11]1) 0.1154 0.822
(14/12/1) 0.1246 0.801
(14/13/1) 0.1337 0.795

*The most appropriate architecture after network training based on RMS error
and accuracy rate.

Afterward, the nonparametric regression model was
designed and fitted to the data and then the most suitable
model was selected. The RMS criterion was 0.1003 for the
best model.

The area under the ROC curve is used as one of the di-
agnostic criteria to compare the models. The values of 0 to
0.5 in the model convey a classification that has been made
randomly while the total diagnosis capacity of the model
is confirmed if the values are 0.5 to 1. In the experimental
set, the areas under the ROC curve were 81.51% and 85.73%
(Table 2) for neural network and nonparametric regression
models, respectively.

Table 2. Results of Comparing 100 Pairs of Nonparametric Regression and Neural
Network Models

Index Neural Network Nonparametric

Regression

Area under the ROC curve 0.815 (0.781- 0.886)" 0.857(0.798 - 0.937)

Accuracy rate 85.34 (78.12- 89.62) 91.25 (88.31-93.01)

#95% Confidence Interval.

The ROC curve for both models is illustrated in Figure
1. The Classification Accuracy Rate is another index for fit-
ness that is defined as the ratio of cases classified correctly
in each group. The ability for recognizing the models is
shown by values of 0.5-1. As indicated in the above Table 2,
the proper classification of the nonparametric regression
model compared to the neural network model is guaran-
teed by the correct predicted proportion. Based on Table
2, the accuracy rate for the ultimate nonparametric regres-
sion model was 91.25% while it was 85.34% for the final neu-
ral network model.

5. Discussion

In the present study, we applied the nonparametric
regression model based on the kernel estimation to pre-
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Figure 1. The ROC curve according to the final nonparametric regression and neural
network models

dict the psychological symptoms during six months after
MTBI. Also, we investigated the prediction accuracy of the
nonparametric regression and neural network models for
the first time. Our results showed that the nonparamet-
ric regression works better than its conventional alterna-
tive. Studies conducted on the statistical modeling of post-
traumatic psychological symptoms were mostly to exam-
ine the effective factors on the psychological symptoms
based on logistic regression (19, 21-24).

Most studies conducted on predicting the variables in
medical sciences applied the neural network models. How-
ever, the practical application of ANNs seems to be faced
with some problems. It is essential to know that design-
ing a network is really hard and the related fundamen-
tal theory should be taken into account. Second, testing
the relevance of input variables and selecting variables in
non-linear methods just according to some fixed formal
techniques are totally impossible (25). Third, as compared
to conventional models, no etiologic explanation may be
made for the weights calculated in the network (26). No
mathematical relationship is firmed between the input
variables and the target. Finally, this is obvious that learn-
ing ANN is really time-consuming computationally, which
demands sophisticated software.

The nonparametric regression formulated function is
notrestricted and can focus and target at complicated pat-
terns more flexibly than the neural network. For instance,
when little information of the actual connection is avail-
able, pattern recognition is more strengthened by this spe-
cific(27). Moreover, as mentioned before, the nonparamet-
ric regression formulated function is not restricted and it
is more workable and stable than the neural network to

simulate complicated patterns. Another characteristic of
nonparametric regression models is that they are able to
find patterns even in the case of missing data (28). Incom-
plete noisy patterns are very powerfully searched by these
models.

On the whole, when complex dependencies and inter-
actions are concerned in the dataset, nonparametric re-
gression models seem to be the best choice. On the con-
trary, since causal conclusion among variables is the basic
mission of modeling and with regard to the determination
of the effect of each variable on the response variable, it
seems that the classic models such as logistic regression
are useful enough.

In conclusion, the nonparametric regression model
can be used appropriately for the psychological symptoms’
prediction in trauma patients. Thus, the classification
of trauma patients is possible through these predictions,
which will contribute to recognizing and spotting health
care resources required just based on patients’ needs. Fur-
thermore, since the linear and logistic methods are mostly
used in the majority of predictive models for analysis,
employing nonparametric regression models can help in
planning and promoting programs that are more effective
for screening individuals at risk of mental disorders.

Because there is some evidence about the impact of
traumatic brain injury on the psychological symptoms of
patients over time, we focused on the period of six months
after trauma. One should note that there is no definitive
period that can truly forecast this impact of brain injury
and this is an open question that must be dealt with in fu-
ture research. Our sample size was small such that we ap-
plied only 100 patients for our study. Though this sample
size covers some scientific criteria, it would be better to se-
lect larger samples for getting a certain result.
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